Supporting Online Material for

RNAi in Budding Yeast

Ines A. Drinnenberg, David E. Weinberg, Kathleen T. Xie, Jeffrey P. Mower, Kenneth H. Wolfe, Gerald R. Fink, David P. Bartel*
*To whom correspondence should be addressed. E-mail: dbartel@wi.mit.edu
Published 10 September 2009 on Science Express
DOI: 10.1126/science. 1176945

This PDF file includes

Materials and Methods
Figs. S1 to S12
Tables S1 to S4 and S6 to S8
References
Other Supporting Online Material for this manuscript includes the following: (available at www.sciencemag.org/cgi/content/full/1176945/DC1)

Table S5. Transcripts that overlap siRNA-producing loci.

Drinnenberg et al., Science 2009

Supporting Online Material

Materials and Methods

Growth conditions and genetic manipulations

S. castellii was grown at $25^{\circ} \mathrm{C}$ on standard S. cerevisiae plate and liquid media (e.g., YPD and SC). Transformations were performed as described (S1) with some modifications. Either 0.5-2 $\mu \mathrm{g}$ plasmid DNA or $1-7 \mu \mathrm{~g}$ linear DNA was added to $5 \mu \mathrm{l}$ single-stranded DNA ($10 \mathrm{mg} / \mathrm{ml}$ salmon sperm DNA, Sigma D7656), mixed with 50μ l yeast ($\sim 3 \times 10^{8}$ cells in 100 mM lithium acetate), and added to transformation buffer (a mixture of $240 \mu 140 \%$ PEG 3350 and $36 \mu 11 \mathrm{M}$ lithium acetate). After incubation at $25^{\circ} \mathrm{C}$ for $30-90 \mathrm{~min}, 35 \mu \mathrm{l}$ of DMSO was added, and the entire mixture was incubated at $42^{\circ} \mathrm{C}$ for 10 min , resuspended, and then plated on selective media.

Other species. Growth temperatures were as follows, unless otherwise noted: K. polysporus, $25^{\circ} \mathrm{C}$; S. cerevisiae, S. bayanus, and C. albicans, $30^{\circ} \mathrm{C}$; E. coli, $37^{\circ} \mathrm{C}$.

Strain construction

A list of strains used and generated in this study is provided (table S7).
Heterothallic strains. Most of our strains started with the homothallic S. castellii strain Y235 (ura3-1/ura3-1, $\mathrm{Ho} / \mathrm{Ho}$), generously provided by M. Cohn (ura3-1 is a point mutation G541A that creates the amino acid substitution G181R). To delete the Ho endonuclease, the loxP-KanMX6-loxP module of plasmid pUG6 (S2) was used as a template to amplify the disruption cassette by fusion PCR (S3), with $\sim 400-$ bp targeting arms on both sides of the cassette (primers 5^{\prime}-TGATCGAAGAAGGCACTAGAA and 5^{\prime}-CAGATCCACTAGTGGCCTATGCGGCCGCTGTCATTGAAAATCGCCAAA, 5^{\prime}-GCGTACGAAGCTTCAGCTGGCGGCCGCGGCCAAATTCTTCCTGCAACT and 5^{\prime}-TTTTCGGACTTCACGAGCTT). The resulting heterozygous strain (ura3-1/ura3-1, Ho/ho::loxP-KanMX-loxP) was transformed with pSH47 (S2), which encodes the Cre recombinase under the control of the S. cerevisiae GAL1 promoter. The expression of Cre was induced for 2 h in liquid culture, and strains sensitive to G418 were isolated. This strain was transferred to sporulation medium (1% potassium acetate, 0.1% yeast extract, 0.05% glucose) for 4 days, and tetrads were dissected. Although sporulation efficiency and spore viability were generally low in Y235, stable heterothallic strains of mating type a and α (DPB004 and DPB005, respectively) could be derived from a tetrad with four viable spores, showing that S. castellii ho deletion strains could not switch mating type.
Deletion of AGO1 and DCR1. AGO1 and DCR1 were deleted using the hygromycin cassette of pAG32 (S4) and the loxP-KanMX6-loxP cassette of pUG6 as dominant selection markers, respectively. For diploids, homozygous deletions (DPB002 and DPB003) were generated first by deleting one copy in Y235, sporulating the resulting heterozygotes, and allowing isolated spores to grow, switch mating types, and mate. AGO1 and DCR1 were deleted in DPB004 and DPB005 to generate DPB006, DPB007, DPB008, DPB009, and DPB313. The AGO1 disruption construct was created as follows: AGO1 was amplified from genomic DNA (5^{\prime}-TGAACGTGTGGAAGACCAAA and

5'-AGTGGCTAACGGCAACATATCAGACA) and cloned into pCR4Blunt-TOPO (Invitrogen); the hygromycin cassette was then inserted between the HindIII and AgeI restriction sites within the AGO1 genomic fragment; the AGO1 disruption construct was then amplified with the same primers used for AGO1 cloning. Deletion of DCR1 was analogous to deletion of Ho (fusion PCR primers 5^{\prime}-TTCAACACCTCCAGCAACAG and 5^{\prime}-CAGATCCACTAGTGGCCTATGCGGCCGCAGGCATTGCAACAATCTGTG, 5'GCGTACGAAGCTTCAGCTGGCGGCCGCGCTGTTGCTGGAGGTGTTGAA and 5^{\prime}-TTTACCACCATACCATGAGTTTTT).

Tagged Ago1 strain for immunoprecipitation. A haploid strain expressing Flag 3 -tagged Ago1 from its native promoter (DPB220) was constructed by two-step homologous recombination in DPB005, as follows: a S. cerevisiae URA3 expression cassette (amplified from pYES2.1, Invitrogen) was used to replace the start codon of AGO1 by transformation and selection of transformants on SC-ura plates; the URA3 cassette was subsequently replaced by a Flag ${ }_{3}$ tag (amplified with a start codon from pQCXIP, gift of D. Sabatini) by transformation and selection on 5-FOA.
S. castellii GFP reporter strains. The loxP-KanMX6-loxP cassette in DPB009 was removed by Cre expression as described above to generate DPB318. The GFP(S65T)-KanMX6 module from pFA6a (S5) was then integrated at the endogenous ura3 locus in DPB005, DPB313, and DPB318 (such that GFP was fused in-frame directly after the ATG start codon of ura3) to generate GFPexpressing strains DPB314, DPB317, and DPB321. The silencing constructs (pIp, pIpweakSC_GFP, and pIp-strongSC_GFP) were integrated upstream of the ORF annotated as Scas_633.2 in DPB314, DPB317, and DPB321 to create strains DPB331-DPB339. For these integrations, each silencing construct was linearized by digestion with SacI, and $1.5 \mu \mathrm{~g}$ was transformed. Transformants were selected on SC-ura plates.
S. cerevisiae RNAi reporter strains. The GFP(S65T)-KanMX6 module from pFA6a was integrated at the endogenous ura3 locus in L4718 to create DPB249. Integration of Ago1 and Dcrl expression vectors ($\mathrm{pRS} 404-\mathrm{P}_{\text {TEF }}-$ Ago1 and pRS405- $\mathrm{P}_{\text {TEF }}-\mathrm{Dcr} 1$) and GFP silencing construct vectors (pRS403-P GAL1 -weakSC_GFP and pRS403-P GAL1 $^{\text {-strongSC_GFP) into the }}$ genome was done by linearization and transformation using standard protocols (S6) to create DPB250, DPB251, and DPB255-DPB260. To generate strains useful for URA3 silencing, DPB249 and DPB258 were transformed with functional URA3 coding sequence amplified from pRS406 to create the uracil prototrophs DPB271 and DPB275, respectively. Integration of the silencing construct pRS403-P GAL1 -hpSC_URA3 into DPB271 and DPB275 generated DPB272 and DPB276, respectively.

Plasmid construction

A list of plasmids generated in this study is provided (table S8).
Yeast Ago1 and Dcr1 expression plasmids. S. castellii AGO1 or DCR1 was cloned into pYES2.1 (Invitrogen) to produce the galactose-inducible Agol and Dcr1 expression plasmids pYES2.1Ago1 and pYES2.1-Dcr1, respectively. GFP was also cloned into pYES2.1 (creating pYES2.1GFP) as a negative control.
E. coli recombinant expression plasmids. For recombinant expression of Dcr1 in E. coli, DCR1 was cloned into pET101/D-TOPO, creating pET101-Dcr1. pET101-lacZ was supplied by the manufacturer (Invitrogen).
S. castellii GFP silencing constructs. A multiple cloning site containing XhoI and EcoRI restriction sites was cloned between the PvuII and $X b a I$ restriction sites of pYES2.1. For the strong silencing construct, 275 bp of GFP sequence from pFA6a was then cloned in the sense orientation between PvuII and XhoI sites, and in the antisense orientation between EcoRI and $X b a I$ sites, in E. coli SURE (Stratagene). The weak silencing construct was made identically, except without GFP sequence in the antisense orientation. A 73-bp sequence spanning intron 1 from S. pombe rad9 was then added between XhoI and EcoRI sites (modeled after (S7)). To convert these episomal plasmids into integrating plasmids, the 2-micron and f1 origins were then replaced (using NheI and SpeI sites) by sequence from S. castellii sc633:288301-289016 (amplified from genomic DNA with 5'-AAAAGCTAGCGATCCCTTATCAAATATGGTAC and 5'AAAAACTAGTGTAGAATCCAGAGAATAGAATC). These resulting S. castellii integrating plasmids expressing weak and strong GFP silencing constructs are pIp-weakSC_GFP and pIpstrongSC_GFP, respectively. The pIp empty vector was created by replacing the hairpin of pIpstrongSC_GFP with XhoI and EagI sites.
S. cerevisiae reconstitution and silencing constructs. Vectors pRS404- $\mathrm{P}_{\text {TEF }}$-Ago1 and pRS405$\mathrm{P}_{\text {TEF }}$-Dcr1 were constructed by insertion of the coding sequence of the respective S. castellii genes between the TEF promoter and CYC1 terminator (cloned from pRS416-P $\mathrm{P}_{\text {TEF }}(\mathrm{S} 8)$) of the appropriate vector (S9) using SpeI and XhoI sites (Ago1) or XbaI and XhoI sites (Dcr1). To generate vectors $\mathrm{pRS} 403-\mathrm{P}_{\text {GAL1 }}$-strongSC_GFP and pRS403-P GAL1 $^{-}$weakSC_GFP, an expression cassette containing the GAL1 promoter, $\overline{C Y C 1}$ terminator, and GFP silencing construct sequence was cloned out of the appropriate episomal pYES2.1 silencing construct into the NotI and SalI sites of pRS403. To generate the URA3 silencing vectors, 339 bp of $U R A 3$ sequence from pRS406 was initially cloned into the episomal pYES2.1 GFP weak silencing construct in the sense orientation between PvuII and XhoI sites (thereby replacing the GFP sequence), and in the antisense orientation between EcoRI and XbaI sites. pRS403-P $\mathrm{P}_{\text {GAL1 }}-\mathrm{hpSC}$ _URA3 was then created by cloning an expression cassette containing the GAL1 promoter, CYC1 terminator, and URA3 silencing construct sequence out of this pYES2.1 plasmid into the NotI and SalI sites of pRS403.

In vitro dsRNase assays

Substrates. Blunt-ended dsRNA substrate was prepared by simultaneous in vitro transcription from two PCR templates carrying T7 promoter sequences at opposite ends. Reactions were assembled using the MAXIscript Kit (Ambion) with a $32: 1$ molar ratio of UTP:[$\left.\alpha-{ }^{32} \mathrm{P}\right]$ UTP (800 $\mathrm{Ci} / \mathrm{mmol}$) according to the manufacturer's directions. Control ssRNA was prepared similarly, except that a single PCR template was included in the transcription reaction. DNase-treated RNA was fractionated on a 4% urea gel, eluted from gel slices in 0.3 M NaCl overnight at $4^{\circ} \mathrm{C}$, and ethanol precipitated.
Strains. Wild-type strains used in Figure 2A were S. castellii Y235, K. polysporus KpolWT, C. albicans Can14, and S. cerevisiae FY45. Strains used in Figure 2E were as follows: S. castellii, DPB005, DPB318, and DPB318 transformed with pYES2.1-Dcr1; S. cerevisiae, F2005 and F2005 transformed with either pYES2.1-Dcr1 or pYES2.1-GFP; E. coli, BL21 Star(DE3) (Invitrogen) transformed with either pET101-lacZ or pET101-Dcr1.

Extracts. Strains in Figure 2A were grown in YPD to $\mathrm{OD}_{600} 1.2-1.6$; yeast strains in Figure 2E were grown similarly, except $\mathrm{P}_{\text {GAL1 }}$ strains were grown in SC -ura with galactose/raffinose, and all strains were grown at $25^{\circ} \mathrm{C}$; E. coli were grown in LB with $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin to $\mathrm{OD}_{600} 0.6$ and induced (1 mM IPTG) for 4 h . Cells were harvested by centrifugation and flash frozen in $100-200 \mathrm{mg}$ aliquots. Aliquots were thawed on ice, resuspended in $1 \mu \mathrm{l} / \mathrm{mg}$ lysis buffer $[50 \mathrm{mM}$ HEPES $\mathrm{pH} 7.6,5 \mathrm{mM} \mathrm{MgCl} 2,0.1 \mathrm{mM}$ EDTA, 0.1 mM EGTA, 300 mM sodium acetate, 5% glycerol, 0.25% NP-40, protease inhibitor cocktail (Roche), 1 mM PMSF], and vortexed four times for 45 s at $4^{\circ} \mathrm{C}$ with an equal volume of glass beads. Lysates were clarified by centrifugation at $10,000 \mathrm{x} g$ for 5 min . Extract concentrations were normalized according to absorbance at 260 nm and stored at $-80^{\circ} \mathrm{C}$.
Reactions. The $20 \mu \mathrm{l}$ reactions contained $10 \mu \mathrm{l}$ extract (or $10 \mu \mathrm{l}$ lysis buffer for "Buffer only" control), $4 \mu \mathrm{LX}$ reaction buffer (125 mM HEPES $\mathrm{pH} 7.2,10 \mathrm{mM}$ magnesium acetate, 10 mM DTT, 5 mM ATP), and $10,000 \mathrm{cpm}$ radiolabeled substrate. In Figure 2A, reactions were incubated at $25^{\circ} \mathrm{C}$ (S. castellii and K. polysporus) or $30^{\circ} \mathrm{C}$ (all others) for 2 h ; in Figure 2E all reactions were incubated at $25^{\circ} \mathrm{C}$. Reactions were quenched with AE Buffer (50 mM sodium acetate $\mathrm{pH} 5.5,10 \mathrm{mM}$ EDTA) and phenol extracted.

RNA blots

Total RNA was isolated using the hot phenol method. Small RNA blots were performed using $10-15 \mu \mathrm{~g}$ total RNA per lane and carbodiimide-mediated cross-linking to the membrane (S10), with the following DNA probes radiolabeled at their 5^{\prime} termini: S. castellii siRNA sc1056, 5^{\prime} CTATCTTCATCGATTACCATCTA; S. castellii U6 small nuclear RNA, 5'-TATGCAGGGGAACTGCTGAT; GFP siRNA, 5'-ACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCA; Ty1 probe 1, 5'CCGTTAGACGTTTCAGCTTCCAAAACAGAAGAATGTGAGAAGGCTTCCACTAAG; Ty1 probe 2, 5'-TAAATTAGTGGAAGCTGAAACGCAAGGATTGATAATGTAATAGGATCAATGAATATAAAC. mRNA blots were performed using 4-5 $\mu \mathrm{g}$ DNase-treated total RNA per lane and UV crosslinking. GFP and Ty1 body-labeled antisense riboprobes were prepared by using PCR products as templates for in vitro transcription (MaxiScript kit, Ambion). A radiolabeled PYK1 (CDC19) DNA probe was prepared by random priming (Prime-It II, Stratagene).

Strains used in Figure 2B were Y235, DPB002, DPB002 transformed with pYES2.1-Ago1, DPB003, and DPB003 transformed with pYES2.1-Dcr1. Strains used in Figure 4B were DPB331-DPB339. Strains used in Figure 4D and 4F were DPB249-DPB251, and DPB255DPB260. Strains used in Figure 5D were DPB249, DPB255, and DPB258.

RT-PCR

Reverse transcription reactions were performed with 100 ng total RNA using Superscript III according to the manufacturer's instructions (Invitrogen) with the following gene-specific primers in the same reaction: GFP, 5^{\prime}-TGTGGTCTCTCTTTTCGTTGG; ACT1, 5'-
TCAAAGAAGCCAAGATAGAACCA. PCR reactions were assembled in $100 \mu \mathrm{l}$ with $2 \mu \mathrm{l}$ RT reaction using the following primers: GFP, 5^{\prime}-TTTCACTGGAGTTGTCCCAAT and 5^{\prime}-GAAAGGGCAGATTGTGTGG; ACT1, 5'-ACGTTGGTGATGAAGCTCAA and 5'-ATACCTGGGAACATGGTGGT. After the indicated number
of cycles, a $15 \mu \mathrm{l}$ aliquot was removed and combined with $3 \mu \mathrm{l}$ 6X DNA loading dye. $6 \mu \mathrm{l}$ was loaded onto a 1.5% agarose gel, and DNA was visualized by EtBr staining.

Plasmid loss

DPB005, DPB313, and DPB008 were transformed with $1.5 \mu \mathrm{~g}$ pRS316 (S8), pYES2.1weakSC_GFP, pYES2.1-Ago1, or pYES2.1-Dcr1. Transformants were plated directly on SCura plates containing 2% glucose (uninduced) or 2% galactose (induced). To analyze plasmid loss, cells from colonies were inoculated in 5 ml of the medium indicated in Figure S11 and passaged once a day for 4 days.

Southern blots

Each lane contained $2 \mu \mathrm{~g}$ of RNA-free DNA isolated as described in (S11) and digested with XbaI. Plasmids were detected using a probe with the ampicillin-resistance gene sequence (amplified using primers 5^{\prime}-CCATGAGTGATAACACTGCG and 5^{\prime}-GGCACCTATCTCAGCGATC). The genomic locus was detected using a probe with sequence from S. castellii sc718:138001-138427 (amplified using primers 5^{\prime}-GCATAAGCTGTGCTTTAGACT and 5^{\prime}-CTTGTAACGGTTCAATTCTAGC).

FACS analysis

Two biological replicates of each strain were inoculated in SC, either noninducing (2% glucose) or inducing (S. castellii, 2\% galactose; S. cerevisiae, 1% galactose and 1% raffinose), and grown overnight. Fresh cultures were then seeded from the overnight cultures and cells were grown to log-phase. Cells were analyzed using FACSCalibur (BD Biosciences); data were processed with CellQuest Pro (BD Biosciences) and FlowJo (Tree Star). The same samples were used for RNA and GFP analyses.

S. cerevisiae URA3 silencing

Strains (DPB249, DPB271-DPB272, DPB258, DPB275-DPB276) were inoculated in SC under inducing conditions (1% galactose and 1% raffinose) and grown for 1 day. Cells were diluted to OD_{600} of 1.0, and 1:10 serial dilutions were spotted onto the appropriate plates (SC, SC-ura, or 5-FOA; all containing 1% galactose and 1% raffinose) and grown at $30^{\circ} \mathrm{C}$ for 3 days.

S. cerevisiae Ty1 analysis

Transposition assay. Strains (DPB249, DPB255, and DPB258) were transformed with $1 \mu \mathrm{~g}$ of pGTyH3HIS3 (galactose-inducible Ty1 marked with HIS3, where transcription of the Ty1 and HIS3 is in the same direction) (S12) and selected on SC-ura plates. Transformants were streaked out on SC-ura with 2% galactose plates and grown at $20^{\circ} \mathrm{C}$ for 2 days to induce transposition. Cells were then replica-plated onto YPD plates and grown at $30^{\circ} \mathrm{C}$ for 1 day for plasmid loss. These cells were then replica-plated onto 5-FOA-his plates (to select for both plasmid loss and transposition) or 5-FOA plates (to select for plasmid loss only) and grown at $30^{\circ} \mathrm{C}$ for $2-3$ days.

When using the more standard his3-artificial-intron marker for retrotransposition (S13), analogous results were obtained but were not as informative because the marker produces a nonphysiological antisense transcript, which could pair with the sense transcript to generate an ectopic dsRNA trigger.
RNA and protein analysis. Strains (DPB249, DPB255, and DPB258) were inoculated in SC and grown overnight. For non-transposition-inducing conditions, cells were diluted to OD 0.125 and grown at $30^{\circ} \mathrm{C}$ to $\mathrm{OD}_{600} 0.9-1.0$. For transposition-inducing conditions, cells were diluted to 100 cells $/ \mathrm{ml}$ and grown at $20^{\circ} \mathrm{C}$ to $\mathrm{OD}_{600} 0.9-1.0$. Cells were harvested by centrifugation and flash frozen.

Immunoblotting. Three OD_{600} units of cells were resuspended in $100 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$. After adding 160 $\mu 1$ of extraction buffer ($1.85 \mathrm{M} \mathrm{NaOH}, 7.4 \% \beta$-mercaptoethanol), cells were incubated on ice for $10 \mathrm{~min} .160 \mu \mathrm{l}$ of 50% trichloroacetic acid was added, and cells were incubated on ice for an additional 10 min . Precipitated material was collected by centrifugation, and the supernatant was discarded. The tube was washed with $500 \mu 1$ of 1 M Tris pH 8.0 , centrifuged briefly, and the supernatant was discarded. The pellet was vigorously resuspended in $150 \mu \mathrm{l}$ of 1X Laemlli sample buffer and boiled for 4 min . Samples ($12 \mu \mathrm{l}$ each) were resolved by SDS-PAGE, transferred to poly(vinylidene difluoride) in CAPS-ethanol pH 10 , and probed sequentially with Ty1-VLP antiserum (S14, 15) and anti-actin (Abcam, ab8224). Immunoblots were developed with HRP-conjugated anti-rabbit or anti-mouse antibodies and enhanced chemiluminescence (Amersham).

Small-RNA sequencing and analysis

Library preparation. Total RNA was isolated using hot phenol from log-phase YPD cultures of S. castellii F2037, K. polysporus KpolWT, S. cerevisiae FY45, S. bayanus F2035, and C. albicans Can14. Small-RNA cDNA libraries were prepared as described (S16) and sequenced using the Illumina SBS platform. Libraries were also prepared and sequenced from RNAi deletion strains (DPB002 and DPB003).
Ago1 immunoprecipitation. A saturated overnight culture of DPB249 was diluted to $\mathrm{OD}_{600} 0.3$ in 150 ml YPD and grown to OD_{600} 1.5. Extracts were prepared as for in vitro dsRNase assays. For the input fraction, one-fifth of the extract was removed and added to AE buffer. Anti-Flag M2 agarose (Sigma) was incubated with the remaining extract at $4^{\circ} \mathrm{C}$ for 1.5 h . Beads were washed with lysis buffer four times, after which the remaining buffer was removed and AE buffer was added. Small RNA libraries were prepared as described above.

Read processing. After removing the adaptor sequences, reads representing the small RNAs were collapsed to a non-redundant set, and 14-30-nt sequences were mapped to the appropriate genome, allowing no mismatches and recovering all hits (table S1). When counting the reads matching a locus, the count was hit-normalized, i.e., normalized to the number of times that a small-RNA sequence matched the genome. For example, a small RNA sequenced twice that mapped to the genome five times contributed 0.4 read counts to each genomic locus. Sequence and feature files for S. cerevisiae S288C and C. albicans SC5314 were obtained from the Saccharomyces Genome Database (SGD) on September 10, 2007 and the Candida Genome Database Assembly 21. Sequence files for S. bayanus MCYC623 that were current as of January 18, 2009 were downloaded from NCBI. Sequence and feature files for S. castellii CBS4309 and
K. polysporus DSM70294 were obtained from the Yeast Gene Order Browser (YGOB) (S17). Using the set of S. cerevisiae tRNA and rRNA sequences as queries for blastn alignments (evalue cutoff, e-10), genomic loci mapping to tRNA and rRNA in S. castellii, K. polysporus, and S. bayanus were identified. In K. polysporus, tRNA and rRNA annotations were available in the GenBank flatfile obtained from YGOB and used to supplement the alignments.
Initial identification of siRNA clusters. For the small RNAs sequenced from total RNA, genomic regions giving rise to siRNAs were identified by parsing the genome files from S. castellii, K. polysporus, and C. albicans into non-overlapping windows of 500 bp . Windows with high levels of siRNA expression (22-23-nt sequences for S. castellii and K. polysporus, 21-22-nt sequences for C. albicans; excluding tRNA and rRNA reads) were selected by applying read and sequence density cutoffs manually adjusted based on the data set (S. castellii, ≥ 10 reads $/ \mathrm{kb}$ or ≥ 10 genome matches $/ \mathrm{kb}$; K. polysporus, ≥ 50 reads/kb or ≥ 50 genome matches $/ \mathrm{kb}$; C. albicans, $\geq 40 \mathrm{reads} / \mathrm{kb}$ or ≥ 40 genome matches $/ \mathrm{kb}$). Adjacent windows passing the density cutoffs were concatenated. The small-RNA profile of each of these clusters was manually inspected for adherence to properties, including length (23 nt for S. castellii and K. polysporus; 22 nt for C. albicans) and 5'-nt biases (U for S. castellii and K. polysporus; A or U for C. albicans).

Refined identification of siRNA clusters in S. castellii. Using sequencing reads of small RNAs co-purifying with Ago1, a hidden Markov model (HMM) was constructed with two states, "C" (giving rise to siRNAs) and "N" (not giving rise to siRNAs). The ratio of 23-mer reads relative to all reads (excluding $22-$ mer reads) was calculated in $10-\mathrm{bp}$ windows (apportioning hitnormalized counts to the windows based on the fraction of its nucleotides covered by the small RNA) to define two types of emissions: 0) ratio ≥ 0.45 and 1) ratio <0.45. Emission probabilities were generated by training on the initially identified siRNA clusters to represent the "C" state, and training on five supercontigs (sc1014, sc621, sc542, sc534 and sc587) to represent the " N " state. Transition probabilities for the given window size were estimated using the median length of these siRNA clusters (250 bp) that map to Y^{\prime} elements and palindromic arms, or the average length of the intervening genomic sequence between two clusters, i.e. the difference derived from the total length of all contigs $(11,354,548 \mathrm{bp})$ divided by the number of clusters identified in the initial analysis (100). Initial state probabilities were calculated based on the proportion of contigs in "C" state, i.e. total length of siRNA clusters ($25,000 \mathrm{bp}$) divided by the total length of all contigs. Using the Viterbi algorithm, the contigs were parsed over non-overlapping 10-bp windows. The parse yielded 379 clusters (table S3) with the three regions that map to rRNA excluded. The cluster boundaries were adjusted to include the full sequence of all small RNAs with at least one nucleotide mapping to the cluster and to exclude terminal nucleotides not covered by a small RNA.
Cluster annotation. Clusters were further characterized based on previous genome annotations and alignments. Reads for Figure 1C (21-23 nt) and for figure S3 (22-23 nt) were classified into categories. Reads of siRNA clusters that mapped to annotated ORFs in either sense or antisense orientation were grouped together in Figure 1C as reads from ORF clusters. Using the Flag 3^{-} Agol IP dataset, siRNA reads in clusters overlapping ORFs were further separated into "clusters sense to ORF" and "clusters antisense to ORF." siRNA reads that mapped to convergent overlapping ORF transcripts (annotated using the mRNA-Seq dataset) were categorized as "overlap."

The DNA sequences of the siRNA clusters from the S. castellii and K. polysporus datasets were aligned against the S. cerevisiae protein dataset (NCBI) using blastx (e-value cutoff 0.001). Significant alignments to Ty elements were extended 300 nt on both sides, and reads overlapping these extended alignments were classified as Ty-proximal siRNA reads. Additional Ty elements could be identified using annotated Ty elements from (S18) as blastx queries. More careful Ty annotations for S. castellii could then be made by identifying S. castellii Ty LTR, gag, and pol sequences based on the initial blastx matches and other Ty sequence signatures ((S18-20) and references therein). Similarly, siRNA clusters derived from Y' elements were detected. For cases in which siRNA expression exceeded the boundaries of the annotated Y^{\prime} element ORF in a processive, un-gapped fashion, those siRNAs were still classified as Y^{\prime}-element-proximal siRNAs. siRNA clusters in C. albicans were annotated based on the C. albicans genome annotation and blastx alignments against the set of protein sequences downloaded from NCBI (evalue cutoff 0.001).

Palindromes were predicted using the IRF program (S21) with the following parameters: Alignment Parameters, 2, 3, and 5 (match, mismatch, and indels, respectively); minimum Alignment Score To Report Repeat, 100; T4 small palindromes (20-80+nt) loop length, 100 nt ; T5 medium palindromes ($80-300+\mathrm{nt}$) loop length, 1000 nt ; T7 large palindromes (300-2400+ nt) loop length, 5000 nt ; maximal loop length, 5000 nt ; maximal stem length, $10,000 \mathrm{nt}$; allow GT matches. The following numbers of palindromes were identified: 66 in S. castellii, 222 in K. polysporus, 61 in C. albicans, and 390 in S. cerevisiae. These palindromes were compared to our lists of siRNA-generating loci. In most cases when overlap was observed, the 22-23-nt RNAs were enriched in the inverted-repeat regions rather than the intervening region or surrounding regions. In some cases the palindromes overlapped with each other and the one with $22-23-n t$ RNAs mapping to the repeats was the one chosen. In some cases (10 of 43 for S. castellii, and 42 of 90 for K. polysporus), the overlap of 22-23-nt RNAs was not preferentially at the repeats; these were not classified as palindromic clusters. Using the initial datasets, these analyses revealed 19 palindromic siRNA clusters in S. castellii and 29 in K. polysporus, all of which either overlapped or were contained within the set of siRNA clusters identified by the sliding window approach. The refined cluster identification based on the Flag 3 -Agol IP dataset from S. castellii revealed 23 palindromic siRNA clusters (table S5).
Phasing analysis. The frequency of distances separating all 23-mer 5'-end pairs (i,j) mapping to the same DNA strand was calculated using the following equation:

Frequency $_{D}=\sum_{i, j}\left(\text { Reads }_{i} \cdot \text { Reads }_{j}\right)_{D}$
where $D=$ distance between sRNA 5 ' ends
The frequency of distances separating pairs of 23-mer 5^{\prime} ends mapping to opposite strands of DNA was calculated separately using the same equation.

Phylogenetic analysis

Psi symbols for S. pastorianus (Fig. 1A) indicate a highly degraded AGO1 pseudogene and a DCR1 pseudogene that is intact except for a single internal stop codon. The intact S. bayanus $D C R 1$ gene shows conservation of amino acid sequence relative to the S. pastorianus
pseudogene ($d N / d S$ ratio 0.3) despite the absence of intact AGO1 in both species. The AGO1 and DCR1 loci are syntenic among S. castellii, K. polysporus, S. pastorianus, and S. bayanus.
A maximum-likelihood (ML) tree of RNaseIII domains was constructed using the PHYLIP software package (http://evolution.genetics.washington.edu/phylip.html). RNaseIII domains were predicted using SMART (S22, 23). The amino acid sequences of the RNaseIII domains were used to compute a multiple sequence alignment using TCOFFEE (S24). A consensus ML tree was built by running DNAML (PHYLIP) on the amino acid alignment after bootstrap resampling (500 replicates) of the data set using SEQBOOT (PHYLIP). The phylogenetic tree was displayed using TreeView (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html).
Protein name/accession numbers used in Figure 2D are as follows: At1, A. thalania DCL1; At2, A. thalania DCL2; Ca1, C. albicans EAK98282; Ca2, C. albicans XP_717277; Ct1, C. tropicalis AAFN01000070; Ct2, C. tropicalis AAFN01000057; Cn1, C. neoformans XP_569593.1; Cn2, C. neoformans XP_569797.1; Dh1, D. hansenii XP_457483.1; Dh2, D. hansenii XP_457193.1; Hs, H. sapiens DICER1; K1, K. lactis F2416; Kp1, K. polysporus 1045p1; Kp2, K. polysporus 455p11; Mg1, M. grisiae XP_363615; Mg2, M. grisiae XP_367242; Mg3, M. grisiae XP_367242; Nc1, N. crassa-Sms3; Nc2, N. crassa Dcl2; Nc3, N. crassa NCU01762; Sb1, S. bayanus 671p65; Sb2, S. bayanus 643p2; Sca1, S. castellii 696p6; Sca2, S. castellii 626p5; Sc, S. cerevisiae Rnt1; Sp1, S. pombe Pac1; Sp2, S. pombe Dcr1.

To search for a PAZ domain in the S. pombe Dcrl protein, the full-length protein sequence was submitted as a query to the HHpred server, allowing 10 PSI-BLAST iterations and 1000 maximum hits (S25). All available standard HMM databases (pdb70_3Sep09, pdb_on_hold_3Sep09, scop70_1.71, scop70_1.75, cdd_17Jul09, interpro_16.2, pfamA_23.0, smart_17Jul09, panther_4Mar08, tigrfam_4Mar08, pirsf_4Mar08, COG_17Jul09, KOG_17Jul09, CATH_4Mar08, supfam_4Mar08, pfam_17Jul09, cd_17Jul09, test56, test18) were searched, and the results realigned with the Maximum ACcuracy (MAC) alignment algorithm. The search retrieved a family that included full-length Dicers (KOG id: KOG0701; E-value $=0$) and a crystallized Dicer derived from Giardia intestinalis (PDB id: 2qvw/2ffl; Evalue $=1.1 \mathrm{e}-15$), which both aligned to the S. pombe Dcrl in regions that included their PAZ domains. The search also retrieved known PAZ-domain entries (CDD ids: cd02843, cd02844, cd02845, KOG id: KOG1042, Pfam id: PF02170; E-values $=7.9 \mathrm{e}-05,2.3 \mathrm{e}-05,0.95,19,0.018$, respectively), even though these entries lacked flanking domains to aid in the alignment. The same procedure was performed replacing the full-length Dcrl query with a region between the first dsRNA-binding domain and the first RNaseIII domain (a.a. 628-914 of the S. pombe Dcr1 protein), which encompassed the putative PAZ region but no other known domains. This search also retrieved Dicer proteins and other known PAZ domain entries. Analogous searches did not provide evidence for a PAZ domain in S. castelli Dcr1p.

mRNA sequencing and analysis

Strand-specific mRNA-Seq. Two biological replicates of DPB005 (WT), DPB007 (Dago1), and DPB009 ($\Delta d c r 1$) were grown in YPD to $\mathrm{OD}_{600} 0.6-0.8$. Total RNA isolated using hot phenol was treated with DNaseI (RiboPure-Yeast Kit, Ambion). Poly-(A) ${ }^{+}$mRNA was purified from 75 $\mu \mathrm{g}$ total RNA using magnetic oligo-dT DynaBeads (Invitrogen) according to the manufacturer's instructions, and then fragmented by alkaline hydrolysis (S26). Trace amounts of synthetic 3'-
$\mathrm{pCp}\left[5^{\prime}-{ }^{32} \mathrm{P}\right]$-labeled $26-$ nt and $32-\mathrm{nt}$ RNA size markers were added to monitor the subsequent steps. RNA fragments ($25-45 \mathrm{nt}$) were gel-purified and 3^{\prime}-dephosphorylated in a $25 \mu \mathrm{l}$ reaction containing 12.5 units T4 PNK (New England Biolabs) and MES-NaOH buffer (100 mM MES$\mathrm{NaOH} \mathrm{pH} 5.5,10 \mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM} \beta$-mercaptoethanol, 300 mM NaCl) for 6 h at $37^{\circ} \mathrm{C}$. After phenol extraction and precipitation, RNA was ligated to pre-adenylated adaptor DNA as described (S16). Gel-purified ligation products were 5^{\prime}-phosphorylated in a $14 \mu 1$ reaction containing 15 units T4 PNK and PNK buffer for 30 min at $37^{\circ} \mathrm{C}$. After phenol extraction and precipitation, RNA was ligated to a 5^{\prime}-adaptor RNA, gel-purified, converted to cDNA, amplified, and sequenced as described (S16).
Read processing. The first 25 nt of each 36 -nt read were isolated and collapsed into a nonredundant set of $25-\mathrm{nt}$ sequences with occurrence counts (table S4). Sequences were mapped to the reference genome, allowing no mismatches and recovering all hits. Transcript-specific analysis of small-RNA data (e.g., Fig. 3A) was based on 22-23-nt reads from the Flag ${ }_{3}$-Agol IP dataset, unless indicated otherwise.
Exon annotations were downloaded from YGOB (introns less than 10 nt were considered sequencing errors and assigned as exons). Sense mRNA, antisense mRNA, and antisense smallRNA read counts were calculated individually for each gene by summing the hit-normalized reads mapping either to the 5^{\prime}-half of the ORF (mRNA tags, half-ORF analysis) or across all of the ORF (small-RNA reads); a sequence contributed $N \cdot n t / 25$ reads to a gene ($N=$ hit-normalized read number; $n t=$ number of $n t$ in the $25-n t$ sequence overlapping the ORF). In parallel, mRNA tag counts were also calculated across the entire ORF (full-ORF analysis, fig. S4).

For each gene, mRNA-Seq tag counts from biological replicates were averaged. Genes for which none of the three strains had an average tag count above 20 (half-ORF analysis) or above 30 (full-ORF analysis), and ORFs corresponding to Y^{\prime} element fragments, were excluded from all analyses except in figures S4A and S4B. mRNA abundance was calculated by dividing tag counts by kb of mapped exon. mRNA-Seq tag counts from $\Delta a g o 1$ were normalized to those of WT by first ranking genes based on the ratio of tags in $\Delta a g o 1$ versus WT, and then multiplying the WT tag counts by a factor such that the median ranked gene had a transcript abundance ratio of 1 . An analogous normalization procedure was also applied to $\Delta d c r 1$. The final normalization factors were 0.8847 for WT, 1.0000 for $\Delta a g o 1$, and 0.8440 for $\Delta d c r 1$. The same normalization factors were applied to the single-nucleotide-resolution mRNA-Seq plots for the Y^{\prime} element consensus (Fig. 3B).

Consensus Y^{\prime} element of S. castellii. An initial set of Y^{\prime}-element fragments was obtained by extending and combining annotated Y^{\prime}-element ORFs and Y^{\prime}-element fragments manually identified in the course of annotating siRNA clusters. These fragments were assembled into a single contig using SeqMan Pro (DNASTAR Lasergene). The resulting majority sequence was used as a query for blastn against the genome (e-value cutoff 10^{-10}, MegaBlast option). All additional Y^{\prime} element fragments obtained from this search were added to the consensus, bringing to 32 the total number of unique contributing genomic fragments (fig. S5). mRNA tags and small-RNA reads were mapped to the consensus Y^{\prime} element independently of the genome. Each library was initially mapped to the set of Y^{\prime} element fragments, allowing no mismatches and recovering all hits. Mapped nucleotide positions with respect to fragments were converted into positions with respect to the consensus. Mapping data was normalized using the above factors and used to generate single-nucleotide-resolution plots of the consensus Y^{\prime} element (Fig. 3B).

Y' element transcript and siRNA abundances were the sum of read and tag nucleotides across the region of interest divided by the appropriate length (25 nt for $\mathrm{mRNA} ; 22$ or 23 nt for siRNA).

Comparing ORF-derived siRNA levels with transcript levels. For each annotated protein-coding gene, mRNA tags and small-RNA reads mapping across its ORF were determined as above, except only uniquely mapping sequences were included. For each ORF, sense and antisense transcript abundances were estimated separately as the sum of tags from all six mRNA-Seq libraries (without normalization), and siRNA abundance was estimated as the sum of sense and antisense small-RNA reads. Genes with no unique mRNA-Seq tags mapping to the coding strand were excluded. Genes were ranked by total transcript abundance (sum of sense and antisense tags) and by inferred duplex abundance (minimum of sense and antisense tags). Genes with non-zero abundance were divided into three equally sized bins (high, mid, low). For inferred duplex analysis, genes with zero inferred duplex abundance (i.e., genes with sense tags but no antisense tags) formed a fourth bin.

Transcripts corresponding to siRNA-generating loci. For each siRNA cluster identified using the HMM, two transcripts-one on each strand-were initiated and assigned the coordinates of the cluster. Tags from $\Delta d c r 1$ mRNA-Seq libraries were used to extend cluster transcripts as follows. The transcript was extended 10 nt in the 5^{\prime} direction if that $10-\mathrm{nt}$ window had a tag density within 10 -fold (above or below) of that of the initially assigned transcript. This process was iterated using the average tag density of the extended transcript. Once a window failing this criterion was reached, the transcript was terminated before the window. Then, the 3^{\prime} end was also thus extended, beginning with the average tag density of the transcript that included the extended 5^{\prime} end. Transcript extension was also tried first in the 3^{\prime} then in the 5^{\prime} direction; when the transcript ends disagreed between these two orders, the combination of 5^{\prime} and 3^{\prime} ends forming the largest transcript was used. The ends were then more finely mapped by identifying the first nucleotide upstream and last nucleotide downstream that corresponded to any tags (in $\Delta d c r 1$ mRNA-Seq libraries), with a maximum extension of 10 additional nucleotides. Coordinates of inferred transcripts are presented in table S3. Transcripts that had mRNA-Seq tags mapping to them but that did not overlap any previous annotations were annotated as non-coding-siRNA-generating genes (NCS, table S3).
Transcript abundance in each mRNA-Seq library and siRNA abundance were determined as with coding transcripts, with the following exceptions: intron annotations were ignored, and an average read cutoff of 15 tags (half-transcript analysis) or 20 tags (full-transcript analysis) in any strain was applied. Y'-element fragments were removed and replaced with the consensus, except in table S3.
Protein-coding transcript extension and overlap. Of 5693 annotated ORFs, 5297 (93\%) had mRNA-Seq tags mapping to at least 70% of the ORF nucleotides (combining tags from all three strains) and were carried forward for further analysis. For each ORF, the 5' and 3' boundaries of the transcript were extended using the mRNA-Seq tags, requiring contiguous tag coverage outward from the ORF boundaries and assigning the revised 5^{\prime} and 3^{\prime} boundaries to the most distal nucleotides represented by these mRNA-Seq tags.
A gene pair was defined as a gene and its right neighbor (according to YGOB annotations). The 5297 ORFs were parsed into 4776 gene pairs, with the loss of pairs attributable mainly to genes located at the ends of contigs. The number of convergent overlapping transcripts giving rise to DCR1-dependent siRNAs was calculated comparing 22-23-nt reads from the Flag 3 -Ago1 input
and $\Delta d c r 1$ datasets. 467 convergent overlapping loci had uniquely mapping small RNA reads in the Flag 3 -Ago1 input dataset. The $\Delta d c r 1$ dataset was then used to adjust this number to account for the loci for which small RNAs represented DCR1-independent mRNA degradation intermediates. Because RNA degradation intermediates would be overrepresented in the $\Delta d c r 1$ small RNA dataset due to the absence of siRNAs, the $\Delta d c r 1$ dataset was normalized to the $\mathrm{Flag}_{3}{ }^{-}$ Agol input dataset based on the number of rRNA and tRNA reads. Three normalized $\Delta d c r 1$ datasets were constructed from the complete dataset by random sampling without replacement. In these three datasets, a median of 30 convergent overlapping loci had uniquely mapping $\Delta d c r 1$ small RNA reads, which indicated that at least 437 convergent overlapping loci (43%) gave rise to DCR1-dependent uniquely mapping siRNAs.
To compare overlapping transcripts between S. castellii and S. cerevisiae, a list of gene pairs with opposite and overlapping transcripts in S. cerevisiae was downloaded from http://www.yale.edu/snyder/ (S27). The genes comprising these 828 unique gene pairs were mapped to their corresponding S. castellii genes based on YGOB annotations. 398 pairs corresponded to annotated convergent gene pairs in S. castellii. These pairs were crossreferenced with the list of S. castellii overlapping convergent gene pairs to determine the number producing overlapping transcripts in both species. Of the convergent gene pairs syntenic between these two genomes and reported to generate overlapping mRNAs in S. cerevisiae (S27), 84% generated overlapping mRNAs in S. castellii.
S. cerevisiae mRNA-Seq analysis. Strand-specific mRNA-Seq data from S. cerevisiae (S26) was downloaded from the Gene Expression Omnibus (samples GSM346117 and GSM346118) and processed as for S. castellii. Telomere annotations (TEL16L, TEL16R, TEL12L, and TEL12R) were downloaded from SGD, and hit-normalized tag counts were used to plot the abundance of mRNA-Seq tags at single-nucleotide resolution (i.e. tags contributed to counts along their entire length). To analyze mRNA-Seq tags mapping to a consensus Tyl element, the 28 full-length Ty1 elements in the S288C genome sequence (identified using Ty1H3 as a query for blastn against the genome) were aligned using SeqMan Pro (DNASTAR Lasergene). mRNA-Seq tags matching the consensus element were analyzed as for the consensus Y^{\prime} element of S. castellii, except tag counts were divided by 28 to obtain the average number of tags per full-length element at each position.

Figure S1. Analysis of small-RNA library from S. bayanus MCYC623. Length distribution of genomematching reads (as percent of reads that do not match tRNA or rRNA) representing small RNAs with the indicated 5' nucleotide (nt). Reads matching tRNAs and rRNAs were excluded.

Figure S2. Analysis of small-RNA libraries from RNAi-mutant strains. (A) Length distributions of genome-matching reads (as percent of reads that do not match tRNA or rRNA) representing small RNAs with the indicated 5' nucleotide (nt). Reads matching tRNAs and rRNAs were excluded.
(B) Classification of 21-23-nt reads based on genome annotations and alignments.

Figure S3. Sequencing of Ago1-associated small RNAs. (A) Length distribution of genome-matching sequencing reads representing small RNAs with the indicated 5' nucleotide. Reads matching rRNA and tRNA are excluded. (B) Enrichment analysis of 22-23-nt reads based on genome annotation and alignments of their mapped loci. Italicized numbers above bars represent fold-enrichment calculated as (\% of total reads in IP)/(\% of total reads in Input). (C) Classification of 22-23-nt reads based on genome annotation and alignments of their mapped loci, considering those that map to clusters in a pattern suggestive of siRNAs separately from those that do not. Gray shading indicates the fraction of small RNAs considered to be siRNAs.

Figure S4. mRNA-Seq analysis of wild-type and RNAi-mutant strains. (A) Correlation in transcript abundance between biological replicates. The number of tags mapping to the 5 ' half of each annotated ORF was used to estimate the abundance of full-length transcripts. Expression level was calculated as tags per kilobase of coding exon. (B) Correlation in transcript abundance between wild-type and RNAi-mutant strains. Plots are as in (A). AGO1 mRNA had 96.77 tags/kb and 0 tags/kb in WT and Δ ago1 strains, respectively. (C) Plot is as in Figure 3A, except that transcript abundance was calculated using tags across the entire ORF. (D) Plot is as in Figure 3C, except that transcript abundance was calculated using tags across the entire transcript.

Figure S5. Assembly of a S. castellii Y'-element consensus sequence. Y'-element fragments were assembled into a single consensus sequence as described in Materials and Methods. Vertical bars represent single-nucleotide polymorphisms with respect to the majority sequence, many of which fell at the ends of contigs and are presumed to include sequencing errors.

Figure S6. Impact of siRNAs on ORF-containing transcripts. (A) Statistical analysis of the impact of small RNAs (sRNAs) mapping antisense to annotated ORFs. ORFs were sorted descending by antisense sRNAs per kb and the significance of transcript down regulation for the ORFs with greater numbers of small RNAs was calculated for the full range of cutoff values. A one-sided KS test was used to compare the distribution of Δ ago1/WT (blue) or $\Delta d c r 1 / \mathrm{WT}$ (green) transcript ratios for ORFs above and below each cutoff. Plotted are the resulting P-values as a function of the cutoff (expressed as the fraction of all antisense-sRNA-containing ORFs included above the cutoff). The red line indicates the $P=0.05$ significance cutoff. (B) Statistical analysis of the impact of sRNAs generated by overlapping convergent gene pairs. ORFs were sorted descending by overlapping-transcript-derived antisense sRNAs/kb and analyzed as in (A).

Figure S7. Gene-pair organization and overlap in S. castellii. (A) Distribution of gene-pair inter-transcript distances. Gene pairs were binned by the distance between 3 '-ends (convergent), 5 '-ends (divergent), or 3^{\prime}-end of the upstream gene and 5^{\prime}-end of the downstream gene (tandem). Plotted is the fraction of gene pairs of a given orientation category that fall within each bin. † For overlapping tandem gene pairs, transcript ends for both genes represent the 5' and 3' ends of the contiguous signal observed by mRNA-Seq. Therefore, tandem gene pairs are depicted as overlapping across their length.
(B) Correlation between transcript abundance and small RNA density for annotated ORFs. ORFs were binned according to inferred duplex abundance (estimated as the abundance of the limiting strand; top) or total transcript abundance (sum of sense and antisense tags; bottom). Plotted is the fraction of ORFs within a given bin that have at least as many uniquely matching small RNA reads (on either strand) as the x-axis value. As expected if siRNAs in coding sequences derived from dsRNA precursors formed by sense-antisense transcript pairs, the abundance of ORF siRNAs correlated with the abundance of the inferred duplex. Filtered data excludes all convergent overlapping gene pairs that give rise to small RNAs in the overlap region.

A

B

Figure S8. mRNA-Seq analysis of the S. cerevisiae Y^{\prime} elements. (A) Transcripts mapping to chromosome XVI subtelomeres. mRNA-Seq tags were mapped to the reference genome. Tags mapping to the subtelomeric regions of chromosome XVI are shown, with tags contributing to the counts along their entire length. Positions of the vertical axes correspond to the ends of the chromosome. $Y^{\prime}-L$ and $Y^{\prime}-S$ represent the inferred genes corresponding to the long and short isoforms of S. cerevisiae Y^{\prime} elements, respectively. In S. cerevisiae, the telomeres are transcriptionally silenced by Sir2-dependent heterochromatin but still give rise to low levels of cryptic transcripts that are rapidly degraded by the TRAMP and exosome complexes (S28). The previously characterized S. cerevisiae cryptic telomeric transcripts are $\sim 6.5 \mathrm{~kb}$ in length, and begin near chromosome ends and run antisense through the entire Y'-element ORF. The antisense reads we detected across S. cerevisiae subtelomeric regions may represent these previously identified cryptic transcripts. (B) Transcripts mapping to chromosome XII subtelomeres. Plots are as in (A).

Figure S9. Reconstituting RNAi in S. cerevisiae. (A) Northern blot for siRNAs antisense to GFP in a S. cerevisiae strain expressing S. castellii AGO1, DCR1, and either no silencing construct ($($), an integrated strong silencing construct (St), or an integrated weak silencing construct (Wk). Cells were induced in SC media with galactose and raffinose or uninduced in SC media with glucose. (B) FACS histograms of GFP fluorescence in S. cerevisiae expressing S. castellii AGO1 and DCR1 and the indicated silencing constructs. The same cultures were used here for sorting as for RNA collection in (A). In principle the siRNAs and silencing observed under uninduced conditions could be due to leaky expression from the GAL1 promoter, but these effects are probably attributable to constitutive antisense transcription from a downstream promoter.

Figure S10. Analysis of GFP mRNA in reconstituted RNAi in S. cerevisiae. Aliquots from RT-PCR reactions were removed after increasing numbers of PCR cycles (GFP: 28, 32, 36; ACT1: 24, 28, 32) and visualized by ethidium bromide staining.

| A | Wlasmid | Dago1 | $\Delta d c r 1$ |
| :--- | :--- | ---: | ---: | ---: |
| CEN | 300 | 5 | 10 |
| 2μ | 105 | 11 | 7 |
| 2μ Ago1 | 225 | 7 | 25 |
| 2μ Ago1, induced | 169 | 96 | 4 |
| 2μ Dcr1 | 169 | 9 | 11 |
| 2μ Dcr1, induced | 142 | 2 | 127 |

Figure S11. Plasmid instability in RNAi mutants. (A) Number of colonies obtained upon transformation of each strain with the plasmid indicated, sum of three independent transformations (table S6). The CEN plasmid was pRS316; 2μ was a 2 -micron origin plasmid; 2μ Ago1 and 2μ Dcr1 were 2 -micron plasmids expressing Ago1 or Dcr1, respectively, under the S. cerevisiae GAL1 promoter.
(B) Southern blot for abundance of the indicated plasmid in each of the indicated strains. Plasmids (CEN, 2μ) were detected with a probe against the ampicillin-resistance gene; loading controls (thin panels) were probed for a genomic locus. DNA was isolated from cells grown in SC-ura (selective) or YPD (non-selective). (C) Southern blot probed as in (B) monitoring rescue of plasmid maintenance phenotype using DNA isolated from cells grown in YPD (uninduced) or YP-galactose (induced).
Δ ago1 and $\Delta d c r 1$ mutants yielded fewer colonies upon plasmid transformation than did wild-type S. castellii (fig. S11A, top two rows). This effect was observed for CEN plasmids (which contained an S. cerevisiae centromere sequence and an S. cerevisiae chromosomal origin of replication) as well as 2-micron plasmids (which contained the origin of the S. cerevisiae endogenous 2-micron circle but no centromere sequence). To distinguish whether this effect reflected a defect in plasmid transformation (plasmid entering the cell) or plasmid maintenance (propagation of the plasmid after entering the cell), we attempted to rescue the defect by transforming wild-type, Δ ago1, and $\Delta d c r 1$ strains with plasmids expressing either Ago1 or Dcr1 from an inducible promoter. If the mutant strains were defective in transformation, then these Ago1 and Dcr1 expression plasmids would not enter the cell and thus could not rescue the mutant phenotype. Alternatively, if the mutant strains were defective in plasmid maintenance, then these plasmids would enter the cell, and expression of plasmid-borne Ago1 or Dcr1 in the cognate mutant could rescue maintenance of the expression plasmid itself. When the Δ ago1 mutant was transformed with the Ago1-expression plasmid and the cells were plated on inducing media, wild-type numbers of colonies were obtained. The same was observed for the $\Delta d c r 1$ mutant transformed with the Dcr1-expression plasmid. This rescue was not observed with the non-cognate plasmids or when expression was not induced (fig. S11A), thereby demonstrating the specificity of the rescue. These results show that RNAi is required for maintenance of S. cerevisiae plasmids in S. castellii.

We then used Southern blots to monitor plasmid levels. For the CEN plasmid, Δ ago1 and $\Delta d c r 1$ mutants carried, on average, fewer plasmids per cell relative to wild-type cells, even when grown in selective media (fig. S11B, top). For the 2-micron plasmid, Δ ago1 and $\Delta d c r 1$ mutants maintained the plasmid at wild-type abundance in selective media, although growth was considerably slower. When allowed to lose plasmid by growth in rich, non-selective media, the mutants lost more plasmid than the wild-type cells did (fig. S11B, bottom). Consistent with the rescue observed when counting colonies (fig. S11A), expressing the relevant protein from the plasmid being monitored rescued the plasmid-maintenance phenotype (fig. S11C). Partial rescue was observed without induction due to leaky expression, but full rescue required induction.

* Ty1, Ty2, Ty4, Ty5

Figure S12. Approximate copy numbers of retroelements in budding yeast species. Copy numbers were estimated by TBLASTN searches using the Gag-Pol polyprotein as a search query. Intact genes and pseudogenes were counted, but not solo LTRs. S. castellii and K. polysporus have many more Ty3/gypsy elements (18 and 24 elements, respectively) than those budding yeast species that have lost the RNAi pathway (0-3 elements). Most notably, a subfamily of gypsy elements more similar to C. albicans Tca3 (S29) than to S. cerevisiae Ty3 is found exclusively in species that have retained the RNAi pathway: S. castellii and K. polysporus, as well as several Candida species. The two gypsy subfamilies have been proposed to have different mechanisms for priming minus-strand RNA synthesis (30). As in C. albicans, many of the members of the gypsy families in S. castellii and K. polysporus appear to be structurally rearranged. It is possible that selection has favored the retention of these structures as templates for defensive siRNA production.
Table S1. Analysis of small-RNA libraries. Read counts were normalized to the number of genomic matches and separated into different cateories based on genome annotations and alignments. Numbers in parenthesis are percent of reads compared to number of genome matching reads of either all sequence reads or only reads of 21-23-mers.

Annotation	S. castellii				K. polysporus			C. albicans				S. cerevisiae	
	wild-type		Dago1	$\Delta d c r 1$ all reads	all reads		21-23-mers	all reads		21-23-mers		all reads	21-23-mers
	all reads	21-23-mers	all reads										
Ty retrotransposons													
Palindromic	27984.0 (12.1)	24419.2 (22.5)	81.0 (0.1)	11.3 (<0.1)	5891.5	(0.7)	5020.2 (1.6)	0.0	(0.0)		(0.0)	0.0 (0.0)	$0.0 \quad$ (0.0)
Non-palindromic	18949.8 (8.2)	16223.0 (14.9)	271.1 (0.3)	9662.6 (0.8)	98666.5	(11.2)	79859.1 (25.5)	881.5	(0.1)	677.0	(0.3)	52.8 (<0.1)	3.9 (<0.1)
Y^{\prime} elements	4942.9 (2.1)	4172.5 (3.8)	9.0 (0.0)	50.0 (<0.1)	67354.8	(7.6)	56305.0 (18.0)	-		-		10.8 (<0.1)	1.0 (<0.1)
Zorro3	-	-	-	-	-		-	4809.5	(0.4)	3416.0	(1.6)	-	-
CTA2 family	-	-	-	-	-		-	8991.9	(0.8)	6848.9	(3.1)	-	-
LPF family	-	-	-	-	-		-	2198.5	(0.2)	1604.0	(0.7)	-	-
Other transposon homology *	-	-	-	-	-		-	1719.1	(0.1)	1226.0	(0.6)	-	-
Other palindromes	18322.2 (7.9)	16356.7 (15.0)	51.0 (0.1)	23.5 (<0.1)	20503.5	(2.3)	17039.3 (5.4)	-		-		-	-
ORF clusters	1860.2 (0.8)	1583.9 (1.5)	8.7 (<0.1)	45.3 (<0.1)	11114.0	(1.3)	9170.6 (2.9)	2972.6	(0.25)	2080.1	(1.0)	-	-
Other siRNA clusters	15191.2 (6.5)	13267.8 (12.2)	87.0 (<0.1)	6977.3 (0.6)	39390.4	(4.5)	31612.7 (10.1)	8487.0	(0.7)	5367.5	(2.5)	-	-
ORFs	2829.4 (1.2)	1971.5 (1.8)	123.7 (0.1)	23616.4 (1.9)	9094.7	(1.0)	5568.7 (1.8)	19253.8	(1.6)	8131.6	(3.7)	3783.1 (1.0)	700.2 (1.0)
Pseudogenes	n.d.	n.d.	n.d.	n.d.	73.4	(<0.1)	48.0 (<0.1)	n.d.		n.d.		5.2 (<0.1)	2.0 (<0.1)
Centromeres	n.d.	n.d.	n.d.	n.d.	n.d.		n.d.	15.0	(<0.1)		(0.0)	0.0 (0.0)	0.0 (0.0)
Telomeres	n.d.	n.d.	n.d.	n.d.	2284.2	(0.3)	1817.5 (0.6)	n.d.		n.d.		0.2 (<0.1)	0.0 (0.0)
Non-protein coding RNAs													
rRNA	103905.9 (44.7)	19039.8 (17.5)	74687.1 (76.2)	746407.5 (62.7)	525501.2	(59.6)	80098.5 (25.6)	990056.6	(83.2)	148932.0	(68.0)	310004.5 (84.9)	63278.7 (87.4)
tRNA	3550.4 (1.5)	565.2 (0.5)	2635.4 (2.7)	98132.5 (8.2)	63408.8	(7.2)	8267.0 (2.6)	39074.3	(3.3)	6225.0	(2.8)	38398.3 (10.5)	6140.0 (8.5)
Other ncRNA	n.d.	n.d.	n.d.	n.d.	n.d.		n.d.	30297.8	(2.5)	6309.0	(2.9)	2339.4 (0.6)	431.0 (0.6)
Other	34680.1 (14.9)	11169.5 (10.3)	19997.0 (20.4)	305659.6 (25.7)	30565.8	(3.5)	13249.4 (4.2)	80747.5	(6.8)	28135.0	(12.8)	10691.7 (2.9)	1869.2 (2.6)
Total genome-matching reads	232226.0 (100)	108769.0 (100)	97951.0 (100)	1190586.0 (100)	881041.0	(100)	312884.0 (100)	1189505.0	(100)	218952.0	(100)	365286.0 (100)	72426.0 (100)
Total reads	510234		528020	4265687	1777358			3334405				1227275	

[^0]Drinnenberg et al.
Supporting Online Material Page 25

Drinnenberg et al.
Supporting Online Material Page 26

Table S2. Analysis of small-RNA libraries from input and Flag_{3}-Ago1 IP datasets. Read counts were normalized to the number of genomic matches and separated into different cateories based on genome annotations and alignments. Numbers in parentheses are percent of reads compared to number of genome matching reads of either all sequence reads or only reads of 22-23-mers.

	Input				Flag ${ }_{3}$-Ago1 IP			
	all reads		22-23-mers		all reads		22-23-mers	
Ty retrotransposons								
Non-palindromic Ty	23892.9	(1.7)	15310.0	(3.8)	53793.7	(4.5)	40818.3	(5.2)
Palindromic Ty	110728.9	(7.7)	75986.0	(19.0)	281476.6	(23.7)	213975.9	(27.2)
Y ' elements	14058.9	(1.0)	9037.7	(2.3)	29293.5	(2.5)	21335.9	(2.7)
Other palindromes	70149.7	(4.9)	51205.4	(12.8)	164269.9	(13.9)	128153.5	(16.3)
ORF clusters								
Sense ORF clusters	7172.8	(0.5)	3530.2	(0.9)	13191.2	(1.1)	10197.4	(1.3)
Antisense ORF clusters	17705.9	(1.2)	11774.5	(2.9)	38322.0	(3.2)	29345.9	(3.7)
Overlapping mRNAs	4958.4	(0.3)	2106.5	(0.5)	9251.8	(0.8)	7028.0	(0.9)
Other siRNA clusters	135377.1	(9.4)	90559.8	(22.6)	368810.2	(31.1)	269707.6	(34.3)
Open reading frames								
Sense ORFs	244127.2	(16.9)	29220.9	(7.3)	49693.8	(4.2)	13907.4	(1.8)
Antisense ORFs	20280.8	(1.4)	5033.7	(1.3)	18576.6	(1.6)	9380.3	(1.2)
tRNA	66699.1	(4.6)	5629.7	(1.4)	3573.7	(0.3)	244.4	(<0.1)
rRNA	479478.7	(33.3)	68866.7	(17.2)	101753.5	(8.6)	20168.2	(2.6)
Other	245917.5	(17.1)	32093.0	(8.0)	53441.5	(4.5)	22434.4	(2.9)
Total genome-matching reads	1440548	(100)	400354	(100)	1185448	(100)	786697	(100)
Total reads	4310251				4102562			

Table S3, continued

Drinnenberg et al.
Supporting Online Material Page 31

Table S4. mRNA-Seq analysis of wild-type (WT) and RNAi-mutant strains. Each tag was comprised of the first 25 nt of a 36-nt Illumina read.

	WT_1	WT_2	$\Delta a g o 1 _1$	$\Delta a g o 1 _2$	$\Delta d c r 1 _1$	$\Delta d c r 1 _2$	Total
Sequencing							
Total reads (tags)	$5,237,134$	$5,710,767$	$5,469,626$	$5,672,984$	$5,481,666$	$5,873,485$	$33,445,662$
Unique tags	$2,362,087$	$2,355,724$	$1,792,636$	$2,166,169$	$2,079,539$	$2,128,205$	$12,884,360$
Mapping of tags							
Genome-matching tags	$3,913,229$	$4,594,533$	$4,256,197$	$4,682,941$	$4,609,746$	$4,972,396$	$27,029,042$
\% of total tags	74.7	80.5	77.8	82.5	84.1	84.7	80.8
Unique genome-matching tags	$1,239,480$	$1,439,462$	905,718	$1,367,051$	$1,367,339$	$1,416,775$	$7,735,825$
\% of total tags	52.5	61.1	50.5	63.1	65.8	66.6	60.0
Total genomic hits	$1,283,574$	$1,487,146$	943,739	$1,415,491$	$1,415,527$	$1,467,372$	$8,012,849$
Analysis							
rRNA tags	490,038	562,592	699,948	615,593	613,841	755,697	$3,737,709$
\% of genome-matching tags	12.5	12.2	16.4	13.1	13.3	15.2	13.8
tRNA tags	559	566	738	604	576	722	3,765
\% of genome-matching tags	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sense annotated ORF tags	$2,949,357$	$3,426,898$	$3,167,181$	$3,518,675$	$3,487,311$	$3,705,506$	$20,254,928$
\% of genome-matching tags	75.4	74.6	74.4	75.1	75.7	74.5	74.9
Antisense annotated ORF tags	74,307	84,847	102,596	92,149	94,662	115,526	564,087
\% of genome-matching tags	1.9	1.8	2.4	2.0	2.1	2.3	2.1

Drinnenberg et al.
Supporting Online Material Page 32

Table S6. Number of colonies obtained upon transformation of each strain with the plasmid indicated, labeled as in figure S11A. Three independent transformations are shown (summed in figure S11A).

Plasmid	Transformation 1			Transformation 2			Transformation 3		
	WT	$\Delta \mathrm{ago1}$	$\Delta d c r 1$	WT	Dago1	$\Delta d c r 1$	WT	Dago1	$\Delta d c r 1$
CEN	66	0	0	186	5	8	48	0	2
2μ	77	9	6	10	0	1	18	2	0
2μ Ago1	106	5	20	98	0	0	21	2	5
2μ Ago1, induced	68	44	3	78	26	0	23	26	1
$2 \mu \mathrm{Dcr} 1$	95	9	4	51	0	3	23	0	4
$2 \mu \mathrm{Dcr1}$, induced	58	2	70	48	0	24	36	0	33

Table S7. Strains used and generated in this study.

Strain	Genotype	Species	Reference
FY45	MATa/MAT α	S. cerevisiae S288C	(30)
F2035	MATa/MAT α	S. bayanus MCYC623	NCYC
KpolwT	Wild-type	K. polysporus DSM70294	(31)
Can14	MATa/MAT α	C. albicans SC5314	(32)
F2037	Wild-type	S. castellii CBS4309	NCYC
Y235	MATa/MAT α ura3-1/ura3-1	S. castellii CBS4310	(33)
DPB002	MATa/MAT α ura3-1/ura3-1 ago14::HYG/ago14::HYG	S. castellii CBS4310	This study
DPB003	MAT a/MAT α ura3-1/ura3-1 dcr13::IoxP-KanMX6-loxP/dcr14::IoxP-KanMX6-loxP	S. castellii CBS4310	This study
DPB004	MATa ura3-1 hos	S. castellii CBS4310	This study
DPB006	MATa ura3-1 hos ago1d::HYG	S. castellii CBS4310	This study
DPB008	MATa ura3-1 hod dcr14::IoxP-KanMX6-loxP	S. castellii CBS4310	This study
DPB005	MAT α ura3-1 hos	S. castellii CBS4310	This study
DPB007	MAT α ura3-1 hod ago1a::HYG	S. castellii CBS4310	This study
DPB009	MAT α ura3-1 hod dcr14::IoxP-KanMX6-loxP	S. castellii CBS4310	This study
DPB220	MAT α ura3-1 hod Flag $_{3}$-AGO1	S. castellii CBS4310	This study
DPB313	MAT α ura3-1 hos ago1a::HYG	S. castellii CBS4310	This study
DPB318	MAT α ura3-1 hod dcr1s	S. castellii CBS4310	This study
DPB314	MAT α hos ura3::EGFP(S65T)-KanMX6	S. castellii CBS4310	This study
DPB317	MAT α hos ago1d::HYG ura3::EGFP(S65T)-KanMX6	S. castellii CBS4310	This study
DPB321	MAT α hod dcr1号 ura3:: EGFP(S65T)-KanMX6	S. castellii CBS4310	This study
DPB331	MAT α hos ura3::EGFP(S65T)-KanMX6 c633::p/p	S. castellii CBS4310	This study
DPB332	MAT α hod ura3::EGFP(S65T)-KanMX6 c633::plp-weakSC_GFP	S. castellii CBS4310	This study
DPB333	MAT α hos ura3::EGFP(S65T)-KanMX6 c633::p/p-strongSC_GFP	S. castellii CBS4310	This study
DPB334	MAT α hos ago14::HYG ura3::EGFP(S65T)-KanMX6 c633::"pp	S. castellii CBS4310	This study
DPB335	MAT α hod ago14::HYG ura3::EGFP(S65T)-KanMX6 c633::plp-weakSC_GFP	S. castellii CBS4310	This study
DPB336	MAT α hos ago14::HYG ura3:: EGFP(S65T)-KanMX6 c633::p/p-strongSC_GFP	S. castellii CBS4310	This study
DPB337	MAT α hos dcr14 ura3::EGFP(S65T)-KanMX6 c633::p/p	S. castellii CBS4310	This study
DPB338		S. castellii CBS4310	This study
DPB339	MAT α hod dcr1s ura3::EGFP(S65T)-KanMX6 c633::plp-strongSC_GFP	S. castellii CBS4310	This study
F2005	MAT α his $3 \Delta 1$ leu2 20 lys $2 \Delta 0$ ura3 30	S. cerevisiae BY4742	(30)
L4718	MAT α leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15	S. cerevisiae W303-1B	(34)
DPB249	MAT α leu2-3,112 trp1-1 can1-100 ura3::EGFP(S65T)-KanMX6 ade2-1 his3-11,15	S. cerevisiae W303-1B	This study
DPB250	MAT α leu2-3,112 trp1-1 can1-100 ura3::EGFP(S65T)-KanMX6 ade2-1 HIS3::pGAL1-weakSC_GFP	S. cerevisiae W303-1B	This study
DPB251	MAT α leu2-3,112 trp1-1 can1-100 ura3::EGFP(S65T)-KanMX6 ade2-1 HIS3::pGAL1-strongSC_GFP	S. cerevisiae W303-1B	This study
DPB255	MAT a LEU2::pTEF-Dcr1 trp1-1 can1-100 ura3::EGFP(S65T)-KanMX6 ade2-1 his3-11,15	S. cerevisiae W303-1B	This study
DPB256	MAT \& LEU2::"pTEF-Dcr1 trp1-1 can1-100 ura3::EGFP(S65T)-KanMX6 ade2-1 HIS3::pGAL1-weakSC_GFP	S. cerevisiae W303-1B	This study
DPB257	MAT α LEU2:.:pTEF-Dcr1 trp1-1 can1-100 ura3::EGFP(S65T)-KanMX6 ade2-1 HIS3::pGAL1-strongSC_GFP	S. cerevisiae W303-1B	This study
DPB258	MAT a LEU2::pTEF-Dcr1 TRP1::pTEF-Ago1 can1-100 ura3::EGFP(S65T)-KanMX6 ade2-1 his3-11,15	S. cerevisiae W303-1B	This study
DPB259	MAT a LEU2::pTEF-Dcr1 TRP1::pTEF-Ago1 can1-100 ura3::EGFP(S65T)-KanMX6 ade2-1 HIS3::pGAL1-weakSC_GFP	S. cerevisiae W303-1B	This study
DPB260	MAT a LEU2::pTEF-Dcr1 TRP1::pTEF-Ago1 can1-100 ura3::EGFP(S65T)-KanMX6 ade2-1 HIS3::pGAL1-strongSC_GFP	S. cerevisiae W303-1B	This study
DPB271	MAT a leu2-3,112 trp 1-1 can1-100 ade2-1 his3-11,15	S. cerevisiae W303-1B	This study
DPB272	MAT α leu2-3,112 trp1-1 can1-100 ade2-1 HIS3::pGAL1-hpSC_URA3	S. cerevisiae W303-1B	This study
DPB275	MAT α LEU2::pTEF-Dcr1 TRP1::pTEF-Ago1 can1-100 ade2-1 his3-11,15	S. cerevisiae W303-1B	This study
DPB276	MAT \& LEU2::pTEF-Dcr1 TRP1::pTEF-Ago1 can1-100 ade2-1 HIS3::pGAL1-hpSC_URA3	S. cerevisiae W303-1B	This study

Drinnenberg et al.
Supporting Online Material Page 34

Table S8. Plasmids generated in this study.

Plasmid	Description
pYES2.1-Ago1	2-micron plasmid, S. castellii AGO1 under GAL1 promoter
pYES2.1-Dcr1	2-micron plasmid, S. castellii DCR1 under GAL1 promoter
pYES2.1-GFP	2-micron plasmid, GFP under GAL1 promoter
pET101-Dcr1	E. coli Dcr1 expression plasmid
plp	S. castellii integrating plasmid, empty
plp-weakSC_GFP	S. castellii integrating plasmid, weak GFP silencing construct under S. cerevisiae GAL1 promoter
plp-strongSC_GFP	S. castellii integrating plasmid, strong GFP silencing construct under S. cerevisiae GAL1 promoter
pRS404-P ${ }_{\text {TEF }}$-Ago1	S. cerevisiae integrating plasmid, S. castellii AGO1 under TEF promoter
pRS405-P ${ }_{\text {TEF }}$-Dcr1	S. cerevisiae integrating plasmid, S. castellii DCR1 under TEF promoter
pRS403-P ${ }_{\text {GAL1 }}$-weakSC_GFP	S. cerevisiae integrating plasmid, weak GFP silencing construct under GAL1 promoter
pRS403-P ${ }_{\text {GAL1 }}$-strongSC_GFP	S. cerevisiae integrating plasmid, strong GFP silencing construct under GAL1 promoter
pRS403-P ${ }_{\text {GAL1 }}$-hpSC_URA3	S. cerevisiae integrating plasmid, hairpin URA3 silencing construct under GAL1 promoter

Supplemental References

S1. E. Astromskas, M. Cohn, Yeast 24, 499 (2007).
S2. U. Guldener, S. Heck, T. Fielder, J. Beinhauer, J. H. Hegemann, Nucleic Acids Res 24, 2519 (1996).
S3. M. D. Krawchuk, W. P. Wahls, Yeast 15, 1419 (1999).
S4. A. L. Goldstein, J. H. McCusker, Yeast 15, 1541 (1999).
S5. M. S. Longtine et al., Yeast 14, 953 (1998).
S6. R. D. Gietz, R. H. Schiestl, Nat Protoc 2, 31 (2007).
S7. A. Sigova, N. Rhind, P. D. Zamore, Genes Dev 18, 2359 (2004).
S8. D. Mumberg, R. Muller, M. Funk, Gene 156, 119 (1995).
S9. R. S. Sikorski, P. Hieter, Genetics 122, 19 (1989).
S10. G. S. Pall, C. Codony-Servat, J. Byrne, L. Ritchie, A. Hamilton, Nucleic Acids Res 35, e60 (2007).
S11. C. S. Hoffman, F. Winston, Gene 57, 267 (1987).
S12. D. J. Garfinkel, M. F. Mastrangelo, N. J. Sanders, B. K. Shafer, J. N. Strathern, Genetics 120, 95 (1988).
S13. M. J. Curcio, D. J. Garfinkel, Proc Natl Acad Sci U S A 88, 936 (1991).
S14. S. E. Adams et al., Cell 49, 111 (1987).
S15. S. D. Youngren, J. D. Boeke, N. J. Sanders, D. J. Garfinkel, Mol Cell Biol 8, 1421 (1988).

S16. A. Grimson et al., Nature 455, 1193 (2008).
S17. J. L. Gordon, K. P. Byrne, K. H. Wolfe, PLoS Genet 5, e1000485 (2009).
S18. C. Neuveglise, H. Feldmann, E. Bon, C. Gaillardin, S. Casaregola, Genome Res 12, 930 (2002).

S19. C. Llorens, R. Futami, D. Bezemer, A. Moya, Nucleic Acids Res 36, D38 (2008).
S20. E. R. Havecker, X. Gao, D. F. Voytas, Genome Biol 5, 225 (2004).
S21. Y. Gelfand, A. Rodriguez, G. Benson, Nucleic Acids Res 35, D80 (2007).
S22. J. Schultz, F. Milpetz, P. Bork, C. P. Ponting, Proc Natl Acad Sci U S A 95, 5857 (1998).
S23. I. Letunic, T. Doerks, P. Bork, Nucleic Acids Res 37, D229 (2009).
S24. C. Notredame, D. G. Higgins, J. Heringa, J Mol Biol 302, 205 (2000).
S25. J. Soding, A. Biegert, A. N. Lupas, Nucleic Acids Res 33, W244 (2005).
S26. N. T. Ingolia, S. Ghaemmaghami, J. R. Newman, J. S. Weissman, Science 324, 218 (2009).

S27. U. Nagalakshmi et al., Science 320, 1344 (2008).
S28. J. Houseley, K. Kotovic, A. El Hage, D. Tollervey, Embo J 26, 4996 (2007).
S29. T. J. Goodwin, D. E. Dalle Nogare, M. I. Butler, R. T. Poulter, Yeast 20, 493 (2003).
S30. C. B. Brachmann et al., Yeast 14, 115 (1998).
S31. D. R. Scannell et al., Proc Natl Acad Sci U S A 104, 8397 (2007).
S32. W. A. Fonzi, M. Y. Irwin, Genetics 134, 717 (1993).
S33. R. F. Petersen et al., J Mol Biol 318, 627 (2002).
S34. B. J. Thomas, R. Rothstein, Cell 56, 619 (1989).

[^0]: * Hypothetical protein CaO19.7545, potential SWIM zinc finger protein very similar to CaP19.4241, C terminus is same as Rel-associated hypothetical protein, MULE transposase domain Hypothetical protein CaO 19.6608 , weak similarity to C. albicans Cirt2 transposase

